3.9 \(\int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\)

Optimal. Leaf size=690 \[ \frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}+\frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tan ^{-1}\left (\frac {-b \sqrt {a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tanh ^{-1}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e} \]

[Out]

1/8*(-4*a*c+b^2)*arctanh(1/2*(2*a+b*tan(e*x+d))/a^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))/a^(3/2)/e+arcta
nh(1/2*(2*a+b*tan(e*x+d))/a^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*a^(1/2)/e-1/2*arctanh(1/2*(b^2+(a-c)*
(a-c+(a^2-2*a*c+b^2+c^2)^(1/2))+b*(a^2-2*a*c+b^2+c^2)^(1/2)*tan(e*x+d))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a^2
+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^
(1/2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(
1/4)/e*2^(1/2)+1/2*arctan(1/2*(b^2+(a-c)*(a-c-(a^2-2*a*c+b^2+c^2)^(1/2))-b*(a^2-2*a*c+b^2+c^2)^(1/2)*tan(e*x+d
))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)
))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2
+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)-1/4*cot(e*x+d)^2*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)
*(2*a+b*tan(e*x+d))/a/e

________________________________________________________________________________________

Rubi [A]  time = 23.73, antiderivative size = 690, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 14, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3700, 6725, 720, 724, 206, 734, 843, 621, 1021, 1078, 1036, 1030, 208, 205} \[ \frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tan ^{-1}\left (\frac {-b \sqrt {a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tanh ^{-1}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}+\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e} \]

Antiderivative was successfully verified.

[In]

Int[Cot[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

(Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b^2
 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e*x])/(Sqrt[2]*(a
^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2
 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e) +
 (Sqrt[a]*ArcTanh[(2*a + b*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/e + ((b^2 -
 4*a*c)*ArcTanh[(2*a + b*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(8*a^(3/2)*e)
 - (Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTanh[
(b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) + b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e*x])/(Sqrt[2
]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 +
 b^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*
e) - (Cot[d + e*x]^2*(2*a + b*Tan[d + e*x])*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])/(4*a*e)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 720

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*
(d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^p)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(p*(b^2 -
4*a*c))/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
2*p + 2, 0] && GtQ[p, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1021

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + b*x + c*x^2)^p*(d + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*(-(b*f)) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1030

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1036

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[-(a*c)]

Rule 1078

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 3700

Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^2
), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x^3 \left (1+x^2\right )} \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {\sqrt {a+b x+c x^2}}{x^3}-\frac {\sqrt {a+b x+c x^2}}{x}+\frac {x \sqrt {a+b x+c x^2}}{1+x^2}\right ) \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x^3} \, dx,x,\tan (d+e x)\right )}{e}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x} \, dx,x,\tan (d+e x)\right )}{e}+\frac {\operatorname {Subst}\left (\int \frac {x \sqrt {a+b x+c x^2}}{1+x^2} \, dx,x,\tan (d+e x)\right )}{e}\\ &=-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e}+\frac {\operatorname {Subst}\left (\int \frac {-2 a-b x}{x \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 e}-\frac {\operatorname {Subst}\left (\int \frac {\frac {b}{2}-(a-c) x-\frac {b x^2}{2}}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}-\frac {\left (b^2-4 a c\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{8 a e}\\ &=-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e}-\frac {\operatorname {Subst}\left (\int \frac {b+(-a+c) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}-\frac {a \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}+\frac {\left (b^2-4 a c\right ) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{4 a e}\\ &=\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e}+\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac {\operatorname {Subst}\left (\int \frac {-b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\operatorname {Subst}\left (\int \frac {b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}\\ &=\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e}-\frac {\left (b \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}-\frac {\left (b \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\\ &=\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \tan ^{-1}\left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {\sqrt {a} \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}-\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.92, size = 289, normalized size = 0.42 \[ \frac {\left (8 a^2-4 a c+b^2\right ) \tanh ^{-1}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )-2 \sqrt {a} \left (2 a \sqrt {a-i b-c} \tanh ^{-1}\left (\frac {2 a+(b-2 i c) \tan (d+e x)-i b}{2 \sqrt {a-i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+2 a \sqrt {a+i b-c} \tanh ^{-1}\left (\frac {2 a+(b+2 i c) \tan (d+e x)+i b}{2 \sqrt {a+i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+\cot (d+e x) (2 a \cot (d+e x)+b) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}\right )}{8 a^{3/2} e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

((8*a^2 + b^2 - 4*a*c)*ArcTanh[(2*a + b*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])]
 - 2*Sqrt[a]*(2*a*Sqrt[a - I*b - c]*ArcTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt
[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] + 2*a*Sqrt[a + I*b - c]*ArcTanh[(2*a + I*b + (b + (2*I)*c)*Tan[d + e
*x])/(2*Sqrt[a + I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] + Cot[d + e*x]*(b + 2*a*Cot[d + e*x])*
Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2]))/(8*a^(3/2)*e)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \cot \left (e x + d\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*cot(e*x + d)^3, x)

________________________________________________________________________________________

maple [B]  time = 152.53, size = 2844525, normalized size = 4122.50 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \cot \left (e x + d\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*cot(e*x + d)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {cot}\left (d+e\,x\right )}^3\,\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^2+b\,\mathrm {tan}\left (d+e\,x\right )+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d + e*x)^3*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2),x)

[Out]

int(cot(d + e*x)^3*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \tan {\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}} \cot ^{3}{\left (d + e x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)**3*(a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2)*cot(d + e*x)**3, x)

________________________________________________________________________________________